翻訳と辞書
Words near each other
・ Ozren (Pešter)
・ Ozren (Sokobanja)
・ Ozren Bonačić
・ Ozren Monastery
・ Ozren Nedeljković
・ Ozren Nedoklan
・ Ozren Perić
・ Ozrenovići
・ Ozric Tentacles
・ Ozrinići
・ Ozrinići (tribe)
・ Ozro Baldwin
・ Ozro J. Dodds
・ Ozro W. Childs
・ OzSpy
Ozsváth–Schücking metric
・ OzTAKU
・ OzTAM
・ Ozu
・ Ozu Abam
・ Ozu's Anti-Cinema
・ Ozubulu
・ Ozuki Air Field
・ Ozuki Station
・ Ozuluama
・ Ozuluama de Mascareñas (municipality)
・ Ozuma
・ Ozumba
・ Ozumchi
・ Ozun


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ozsváth–Schücking metric : ウィキペディア英語版
Ozsváth–Schücking metric
The Ozsváth–Schücking metric, or the Ozsváth–Schücking solution, is a vacuum solution of the Einstein field equations. The metric was published by István Ozsváth and Engelbert Schücking in 1962. It is noteworthy among vacuum solutions for being the first known solution that is stationary, globally defined, and singularity-free but nevertheless not isometric to the Minkowski metric. This stands in contradiction to a claimed strong Mach principle, which would forbid a vacuum solution from being anything but Minkowski without singularities, where the singularities are to be construed as mass as in the Schwarzschild metric.
With coordinates \, define the following tetrad:
:e_=\frac=\frac\right)\partial_0+\left(1+(x^3)^2-x^3\sqrt\right)\partial_1+\partial_2\right )
:e_=\frac\right)\partial_0+\left(1+(x^3)^2+x^3\sqrt\right)\partial_1+\partial_2\right )
:e_=\partial_3
It is straightforward to verify that e(0) is timelike, e(1), e(2), e(3) are spacelike, that they are all orthogonal, and that there are no singularities. The corresponding proper time is
:^ = -(dx^0)^2 +4(x^3)(dx^0)(dx^2)-2(dx^1)(dx^2)-2(x^3)^2(dx^2)^2-(dx^3)^2.
The Riemann tensor has only one algebraically independent, nonzero component
:R_=-1,
which shows that the spacetime is Ricci flat but not conformally flat. That is sufficient to conclude that it is a vacuum solution distinct from Minkowski spacetime. Under a suitable coordinate transformation, the metric can be rewritten as
:
d\tau^2 = (- y^2) \cos (2u) + 2xy \sin(2u) ) du^2 - 2dudv - dx^2 - dy^2

and is therefore an example of a pp-wave spacetime.
==References==



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ozsváth–Schücking metric」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.